View Post

Peryton Place

In Radio Astronomy by Brian Koberlein3 Comments

A few days ago I wrote about an interesting type radio signal known as a fast radio burst. These are short, intense pulses of radio energy that have all the hallmarks of being astronomical in origin. One possible source of FRBs could be a neutron star collapsing to a black hole. But there is still some discussion that such bursts could be terrestrial in origin because of another type of radio burst known as a peryton.

View Post

Pico Arcseconds

In Pulsars by Brian Koberlein1 Comment

One of the advantages of radio astronomy is that you can connect observations from radio telescopes thousands of miles apart. Done in the right way, this creates a radio interferometer that effectively makes a virtual telescope as big as the separation (baseline) of the individual telescopes. The bigger your telescope (or virtual telescope), the finer the detail of your image. When we talk about the detail level of an astronomical image, we usually talk about the angle of separation between two distinctly resolvable points. So a resolution of a tenth of a degree would mean you could resolve two points of light (such as stars) separated by at least that angle.

View Post

Little Green Men

In Pulsars by Brian Koberlein3 Comments

In 1967 a PhD student named Jocelyn Bell detected a radio signal with an odd regularity. Patterns can be heard in all sorts of radio signals, but this particular signal was unusual in that it was a pulse with a period of 1.33 seconds. You can see this pattern in the figure above, and you can hear what the signal sounds like here.