A supernova known as ASASSN-15lh is more luminous than any supernova ever seen.
Glitch and Anti-Glitch
About a year ago in Nature astronomers reported evidence of an anti-glitch in the magnetar 1E 2259+586. You might remember from yesterday’s post that a magnetar is a neutron star with an extremely strong magnetic field. This particular magnetar is also a pulsar, meaning that the intense x-ray beams that stream from the magnetar’s polar region happen to be aligned so that we see it flash regularly. You can think of a pulsar as a kind of cosmic lighthouse, if you will.
Magnetars, Pulsars, and X-rays, Oh My!
One of the differences between astronomy and astrophysics is that astronomy is based upon observation, while astrophysics is about the underlying mechanism behind those observations. For this reason, many types of phenomena in the universe have multiple names depending on how we observe them. The reason for this is that typically astronomers start observing different phenomena, give them names, and then only later do astrophysicists figure out that they are different examples of the same thing. By then the names have already stuck.
Weeble Wobble
A magnetar is a neutron star with an extremely strong magnetic field, a billion times stronger than the strongest fields we can create on Earth. As a neutron star, magnetars also have very strong gravitational fields, with a surface gravity a hundred billion times that of Earth. Such a high gravity would seem to ensure that a magnetar is spherical, but a magnetar’s strong gravitational field could distort the star, making it more of an oblate spheroid. We’ve suspected that such a magnetic distortion could occur with magnetars, but now a research team seems to have found an example of this phenomenon.